/v

AARHUS UNIVERSITET

Software Engineering
and Architecture

Pattern Catalog: Facade

/v

AARHUS UNIVERSITET

It would be nice with a simple GUI “to see something”
instead of just xUnit tests...

Pay Station
Fay Station # Imhotep

New Requirement

| £| PayStation GUI o3| (=]
Variant Selection

- =

. | £ PayStation . — >

rg PayStation GUI =13 Cancel (}

Cancel

5c|‘||:l-:|25-:|

“The GUI History of PayStation” ©

|
Cancel ‘ Buy

CS@AU Henrik Baerbak Christensen 2

v /** Create the panel of buttons */ De m o
private JComponent createButtonPanel() {

AARHUS | Box p = new Box(BoxLayout.X_AXIS);

JButton b;

b = new JButton(text: “"Cancel"); /%% The button action listener that reacts on clicking the
b.setAlignmentX(Component.CENTER_ALIGNMENT) ; coin buttons %/

p.add(Box.createHorizontalGlue()); private ActionListener buttonActionListener = new ActionListener() {
p.add(b); public void actionPerformed(ActionEvent e) {
b.addActionListener(new ActionListener() { string s = e.getActionCommand();

. int coin = Int . Int(s):
public void actionPerformed(ActionEvent e) { Ht coin nteger.parseInt(s);

try {
payStation.cancel(); Y . .
- paystatgnn.adﬂPavm_ent[coin):
updateDisplay(); } catch (IllegalCoinException exc) {
FF); // illegal coins just do nothing.
F
b = new JButton(text: "Buy"); updateDisplay();
b.setAlignmentX(Component.CENTER_ALIGNMENT) ; L
p.add(Box.createHorizontalGlue()); Ly
p.add(b); /** Update the digital display with whatever the
p.add(Box.createHorizontalGlue()); e) . .
pay station domain shows *
b.addActionListener(new ActionListener() { pay station domal o !
public void actionPerformed(ActionEvent e) { private void update[llsplayr[] {
Receipt r = payStation.buy(); S5tring prefixedZeros =
”_.p._”atlajnfs‘ila"'“; _ string. format("%4d", payStation.readDisplay()):
// print the receipt .)
Util.showReceiptInWindow(r) ; dlSp'La'l{.SEt[prefixedZeros]'
FE); F
return p;

CS@AU } Henrik Baerbak Christensen 3

/v

AARHUS UNIVERSITET

Analysis

« Seq Diagram

— No difference in behavior of > T

a GUl versusreal & 7 e _H
hardware!

CS@AU Henrik Baerbak Christensen 4

VeV Conclusion

AARHUS UNIVERSITET
* Any kind of user interface can operate the PayStation!
« Wow — Change by addition...

« How come we are so lucky?

/v Design considerations

AARHUS UNIVERSITET

« Behavior that may vary

— the same hardware (or GUI) must operate varying pay station
iImplementations: AlphaTown, BetaTown, EpsilonTown...

« @ Variable behavior behind interface
— PayStation interface...

« @ Compose behavior by delegation

— Gui/Hardware does not itself calculate rates, issue receipts, etc.,
but lets an instance of PayStation do the dirty job...

VeV Result

AARHUS UNIVERSITET

* The side effect of this decision is that interface decouples
both ways!!!
— User interfaces may operate different kinds of PayStation
implementations

» Alpha, Beta, Gamma, ...

— Different kinds of user interfaces may operate the same
PayStation implementation

| £ PayStation ... — m} X

f 10c
<<interface>> | * | <<interface>>
PayStation PayStationGUI

CS@AU Henrik Baerbak Christensen 7

/v Automagical pattern?

AARHUS UNIVERSITET
« PayStation is an example of the Facade pattern

Structure:
Subsystem
Client «interface» I «interface»
Facade ~| Somelnterface
.// I
:'e"i-" II
SomeClassA | |
’ SomeClassD
SomeClassB N
SomeClassC

/v Consequences

AARHUS UNIVERSITET

* Benefits
— Shields clients from subsystem objects
* (depends... Consider HotStone)
— Weak coupling
« Many to many relation between client and fagade
. Liabilities
— Bloated interface with lots of methods

» Because facade must have the sum of responsibilities of the
subsystem

— How to avoid access to the inner objects?

* Read-only interfaces for “outside”, and private interfaces (mutating)
on the “inside” of the fagade/sub system boundary

eV Facade Variants

AARHUS UNIVERSITET
» Facade appears on all levels of architecture!

— An Java Interface is a ‘'small scale’ Facade...
— The Layered architectural style defines a set of Facades
— At remote service level, we have APl Gateway

Pattern: APl gateway
Implement a service that's the entry point into the microservices-based application

from external API clients. See http://microservices.io/patterns/apigateway.html.

An API gateway is a service that’s the entry point into the application from the outside
world. It’s responsible for request routing, APl composition, and other functions,
such as authentication. This section covers the API gateway pattern. I discuss its bene-
fits and drawbacks and describe various design issues you must address when develop-

ing an API gateway.

CS@AU Henrik Baerbak Christensen 10

/v Compiler

AARHUS UNIVERSITET
« A Compiler is a pretty complex piece of software
— You will learn soon enough © ‘Oversaettelse’

— Lexical analyzer, Syntax Analysis, Parser, Symbol table, Code
generator...

 Hidden behind an extremely simple Facade

— ‘javac HelloWorld.java’

» The facade has one method
— public ClassFile compile(String filename)

